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E X P L O S I V E  D I S C H A R G E  OF A G A S - S A T U R A T E D  L I Q U I D  

F R O M  C H A N N E L S  A N D  T A N K S  

V. Sh. Shagapov and G. Ya. Galeeva UDC 532.529.5 

A mathematical model for the discharge of a gas-saturated liquid from cylindrical channels is 
developed. Two limiting cases of linear and quadratic relations between the flow friction force 
and the flow velocity are considered. It is established that the process of evacuation from a 
semi-infinite channel consists of two stages. In the initial stage, the flow drag can be ignored, 
and the process of discharge is described by a Riemann wave solution. For the nezt stage, in 
which inertia is insignificant, nonlinear equations are obtained and self-similar solutions are 
constructed for them. The problem of flow through a slot in a tank of finite volume is solved. It 
is shown that the discharge proceeds either in a gas-dynamic choking regime or in a subsonic 
regime, depending on the conditions inside the tank and at the outlet. Ezamples of numerical 
calculations are given. 

I n t r o d u c t i o n .  We consider a gas-saturated liquid flow at certain pressure p0. A decrease in the flow 
pressure to values Po leads to "boiling" of the liquid (formation of a gas phase). In constructing a theoretical 
model for flow with gas evolution, we adopt the following assumptions. The gas phase is produced only by 
evolution of the dissolved gas (the liquid is considered "cold," and, hence, the partial pressure of the liquid 
vapors in the gas phase can be ignored). The relation between the current concentration of the dissolved gas 
and the pressure obeys the Henry law, and, hence, the evolution of the dissolved gas proceeds in an equilibrium 
regime. This regime can occur when the liquid contains a rather great quantity of additive particles, which 
are centers of gas evolution. In particular, for equilibrium gas evolution, it is necessary that the characteristic 
time of diffusion tD -- 1/n2/SD (n is the number of additive particles and D is the diffusivity in the liquid) 

' be much smaller than the characteristic time of the problem t (tD << t). Hence, for n, we obtain the estimate 
n >> h, where h = (Dt) 3/2. In addition, under the above condition of equilibrium gas evolution, the capillary 
forces at the interface are also insignificant. For this, in turn, the radii of gas inclusions should obey the 
relation a >> ~, where a = 2~,/p (or is the surface-tension coefficient and p is the pressure). We assume that 
the velocities of the phases coincide and the temperature of the system is constant and equal to the initial 
temperature To. 

A qualitatively similar pattern takes place for flow of an ordinary boiling liquid where the flow pressure 
reaches the saturation value p0 that corresponds to the initial temperature of the liquid To [P0 = ps(To)]. In 
this case, too it is possible to construct a similar theory with equilibrium phase transitions under adiabatic 
conditions, using the Clausius-Clapeyron equation instead of the Henry law (this case is covered in a separate 
paper). 

1. Basic Equa t ions .  Using the adopted assumptions, we write the following equations of mass and 
momenta for a constant-area channel: 

Op O(pw) = O; (1.1) 
0-7 + 0--7- 
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aw am) _0._2_ p _ 
P ~ ' + W ~ z  - Oz v. (1.2) 

Here p, w, and p are the mean density of the gas-liquid mixture,  the velocity, and the pressure, and r is the 
reduced viscous friction force. For the mean density, we can write 

p p~(1 ~g) ~ (1.3) .= - -  - J -  p g ~ g ,  

where p0. ( / =  l, g) are the true densities of the liquid and gas in the free state, the subscripts I and g refer to 
the liquid and gas, respectively, and ag is the volumetric content of the gas phase. 

Below, we assume that  the liquid is incompressible and the gas is calorically perfect: 

p~ = const, p = pORT (1.4) 

(R is the gas constant).  
According to the Henry law, for the mass concentration of the gas dissolved in the liquid we have 

k = kop/po,  (1.5) 
where k0 is the mass concentrat ion of the saturated gas at pressure p0. Then,  for the mean density of the gas, 
we obtain 

o (1.6) pg = p~ - ag) + pgag. 

In addition, by virtue of the  assumption of equilibrium for the velocities, we have pg/p = ko. Hence, relations 
(1.3)-(1.6) lead to the following equation of state for the gas-liquid system considered: 

Here p~ 0 is the  true density of the free gas at pressure p0 and tempera ture  To. Thus,  the gas-saturated liquid in 
some cases can be considered as a barotropic medium with the equation of state (1.7). In most  cases, k0 << 1, 
and, hence, expression (1.7) can be writ ten as 

1 1 k o (  p0)  (1.8) 
; : pOo 1- 7 

We note tha t  for this equat ion of state, rarefaction shock waves are impossible. In the case where the mean 
density of the gas dissolved in the liquid p~ is close to the true density of the gas p~ 0 in the free state 
(p~ o ..~ p~ , the gas-liquid system is called perfect and Eq. (1.S) is simplified and writ ten as 

po __P (1.9) 
P = k-~ p0" 

This case refers to water sa turated with carbon dioxide, for example, at T = 288 K [1]. 
Using (1.8), for the velocity of sound we have 

c 2 _ P~176 P~ (1.10)  
kopo p2" 

When (1.9) is valid, the velocity of sound is given by C 2 = kopo/P~o. Hence, for the perfect system, the 
velocity of sound is constant.  

For comparison, we give the equation of state of a gas-liquid system in which the gas is entirely in the 

free state: 
1 1 - k0 /co p0 
p -  pO + o �9 Pg0 P 

Here k0 is the mass gas content  in the two-phase mixture. 
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To specify the viscous friction force r,  we consider two limiting cases. The first case is a "thin" channel 
with a linear relation between the reduced viscous friction force and the flow velocity: 

t o  
(1.11) 

For laminar flow in a cylindrical channel with a low volumetric concentration of the gas phase (the carrier phase 
is the liquid) the characteristic parameter t(w ) in the friction law (1.11) can be approximated by too ) = a2/8ut, 
where a is the radius of the channel and ~'t is the kinematic viscosity. 

The second case is a "thick" channel with turbulent flow and a quadratic drag law [2]: 

Ito[w 2a ( a ) -1  
r = p ~ ,  z(~)=~-, A= 21og~+1.74 , (1.12) z(=) 

where 6 is the roughness. We note that within the framework of the assumptions adopted here, the system 
considered is an incompressible liquid (p0 = const and C = oo) at pressures exceeding the saturation pressure 

(p > po). 
2. E v a c u a t i o n  f r o m  t h e  Channe l s .  Using the equation of momentum (1.2) with allowance for 

(1.7) and (1.8), it is possible to estimate the characteristic times t ,  and distances z, for which inertia effects 
can affect flow pattern in the channel. For compressible fluid flow in channels, the maximum (critical) flow 
velocities are limited by the local velocity of sound, and, therefore, in the estimations, the velocity of sound 
should be adopted as the characteristic jump of velocities. In the case of the linear friction law (1.11), assuming 
that,  in Eq. (1.2), the terms due to the inertia effects p (Ow/Ot) and p (O(w2/2)/Oz) and the terms due to the 
flow drag pw/t(w ) satisfy the conditions pC~t,  ,,, p C/t(w ) and p C2/2z, ,,, p C/t(w), we obtain the following 
estimates for the characteristic times and distances: t ,  ,~ t(w) and z, ,,, Ct(w)/2. 

Hence, if in the system considered disturbances arise with characteristic times and distances far 
exceeding t ,  and z,, the inertia effects do not have a significant effect on the subsequent flow pattern. If, 
for example, the problem of sudden depressurization at the end of the channel is considered, the inertia effects 
are significant mainly in the initial stage before the times t ,  and on the end segment of length of order z,. 

In the case of the quadratic drag law (1.12), we obtain the estimates t, ,,, z(w)/C and z, -~ z(w)- 
Let us consider the case where the inertia terms in the equation of momenta  are negligible. In the 

problem of depressurization of a channel, this case corresponds to the later stage i t >> t,)  of evacuation. 
Then, using the continuity and momenta equations and ignoring the terms on the left side of Eq. (1.2), for 
,the cases of the linear and quadratic friction laws we obtain 

Op C2t(w) 02p t(=) Op. 
o-7 = t o = -  p --oz' ( 2 . 1 )  

(2.2) 
o-7 = p o z  

Using Eqs. (2.1) and (2.2) we consider the problem of sudden pressure release to a value pe < p0- 
Let the initial velocity of the channel flow be equal to zero. Then, the corresponding boundary and initial 
conditions for Eqs. (2.1) and (2.2) are written as 

P=po  (t=O, z~>0), P=Pe ( t > 0 ,  z = 0 ) .  (2.3) 

This problem is self-similar. For convenience, we bring Eqs. (2.1) to the form 

OP = ~,_2k(1 ) 02P p , C 
Ot Oz 2 , p = __ ~ k(1) 2 po = -~o' = Cot(~), (2.4) 

, c 0 =  0 ,  
Pgo 

Here the dimensionless parameter 2 ,  corresponds to the Ostwald absorption coefficient [1]. A solution of this 
equation subject to conditions (2.3) can be sought in the form P = P(~), where ~ = z / ~ . . I n  this case, 
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conditions (2.3) lead to P(0)  = Pe and P(oo)  = 1 (Pe = PJpo). Then,  Eq. (2.4) in the self-similar variables 
is writ ten as 

dR _ ~2 d2P (2.5) 
2 d~ ~2" 

For the rate of mass flow through the open end of the channel q = -(pw)o, we have 

t(w)P~ P'(O). (2.6) q = ~  
In the case of slight pressure drops (p - p0 << po), setting ~,2 ~ 1, we can linearize Eq. (2.5). Then its 

solution has the form [3] 

2 f e -~2da .  (2.7) P = P c + ( 1 - P c ) 0 ( ~ ) ,  0(~) = - ~  o 

Figure 1 shows the  dimensionless pressure distribution along the channel length in the self-similar 
variable for z = 0 and 9r = 1.74 for two pressures at the boundary of the channel [solid curves 1 and 2 
correspond to P(~ = 0) = 0.2 and 0.7, and the dashed curves are calculated from the analytical solution 
(2.7)1. 

For the mass flow rate defined by expression (2.6), we obtain q. = t(w)(po - p c ) / ~ .  The coefficient 

x (1) = q / q ,  = v G P ' ( 0 ) / ( 1  - P c )  defines the correction to the flow rate due to the nonlinearity of Eq. (2.5). 
In the case of the quadrat ic  friction law, from Eq. (2.2) we have 

cOPcOt = C2k(2) CO-~z cO~Tz ' ~ -- P-'~'p~ k(2) = C2o l 2z(w)pPpO 

This equation is wri t ten in the self-similar variables as 

2 d P =  ~2 d , ~f~P, z (2.8) 

Introducing the new parameters P = (P - Pe)l(1 - Pc) and ~ = (1 - Pe)l/3q and using Eq. (2.8), for 
slight pressure jumps (C ..~ 1 and ~R ~ 1) we obtain 

2 dfi d d~ 
3 ~ d~ - d~/~-=~ (2.9) 
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Conditions (2.3) for these variables are writ ten as 

/5(0) = 0, /5(oo) = 1. (2.10) 

A solution of Eq. (2.9) subject  to (2.10) has the form 

Figure 2 shows the pressure distr ibution calculated from Eq. (2.8) for 9L = 1.7 [curves 1 and 2 
correspond to P ( r / =  0) = 0.8 and 0.2, respectively, and the dashed curves correspond to solution (2.11)]. 

According to the formula of the rate of flow of the  mixture  through a unit  cross-sectional area of the 
channel 

we have q = 
leads to 

(o.) 
q = - ( p w ) 0 =  z(~) p ~  o' 

~/z(,~)p(pe)po P~(O)/(k (2) t)1/3. In the case of slight pressure jumps,  with allowance for (2.11), this 

q* ~/z(w)P(Pe)(1- Pe)4/3PoP'(O) 4 ( 4 •1/3 
= (k (~ ) t )~ /3  , P ' ( o )  = -,r ~ , ~ ]  " 

Similarly, for the dimensionless relation X (2) we can write 

X (2) = ~ / P ' ( O ) / ( t  - Pe)4 /3 /5 ' (0 ) .  

Figure 3 shows curves of X (i) versus A p  for :R, = 1.7. The  numbering of curves 1 and 2 corresponds 
to the values of i. 

For the initial stage (t << t , )  of evacuation, ignoring the terms due to flow friction in Eq. (1.2), we have 
a si tuation similar to the gas-dynamic problem where the discharge process is described by a simple wave 
solution. In this case, the Riemann integral holds: 

P 
dp w(v) = / pC" 

Po 

In the case of a gas-saturated liquid, p and C are defined by relations (1.8) and (1.10). From the 

Riemann integral we obtain w(p)= ~kopo/P~ In (p/po). 
For slight pressure jumps  (P0 - P << P0), assuming that  C(p) = C(po) = Co and p(p) ,~ p(po) = p~, we 

obtain w(p) = ( p -  po)/(p~ 
Here two discharge regimes [4] are possible. The first occurs when -w(pe) < C(pr and rarefaction 

to pressure pc is spread in the tube at velocity w(pe) + C(pr and at the outlet  (z = 0) the pressure pc is 
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established. In the case where -w(pe) > C(pe), rarefaction to the value Pe in the tube is impossible, since 
the corresponding disturbance is carried by the medium toward z < 0 and at the channel outlet, the critical 
pressure Pc is established, which leads to -w(pc)  = C(pc). With allowance for (1.8) and (1.10), the Riemann 
integral leads to the following transcendental equation for PC: 

P0 
dp 

C(pc)  = j 
pc p(p)C(p)" 

Replacing p(p) and C(p) in the right side by expressions (1.8) and (1.10), we obtain (1 + In Pc)/Pc = 
(:R. - I ) / 2 ,  and Pc = pc/po. In the case of the perfect system, this leads to Pc = po/e. We note that the 
leading edge of the rarefaction wave moves relative to the channel with velocity Co = C(po). 

3. S t e a d y  F low t h r o u g h  C y l i n d r i c a l  C h a n n e l s .  For steady flows, Eqs. (1.1) and (1.2) can be 
written as 

pw = m = const; (3.1) 

dw dp 
m ~'z + d--~ = - r .  (3.2) 

In the case of the linear friction law (1.7), from Eqs. (3.1) and (3.2) we have 

( m 2 ) d p  _ m  
1 p-~C 2 dz = t(w )" 

Hence, integrating over the channel length (from zero to ze), we obtain 
p- 
/ ( 1  m2 rnze 

= 

P+ 
The subscripts "plus" and "minus" denote that the parameter refers, respectively to the channel inlet 

(z = 0) and outlet (z = zc). Using (1.11), we bring Eq. (3.3) to the form 

p+ _ p_ _ m2 ( 1  1 )  mz(w) 
L 7_ = 

Solving this equation for m, we obtain 

[ ~ ~'--:Y-- ( 1 1 -1 
m ~  

Substituting the pressure-density relations from (1.8), we have 

P~176 [ zc ~ (  ze 2 (P+-P- )2k~176  ( 1 1 )  -1 . (3.4) 

This formula expresses the rate of flow of the boiling liquid through the cylindrical channel in terms of the 
known pressures at the channel inlet and outlet. 

In the (ase of the quadratic friction law, this relation has the form 

m l(lnP--t- Z~w))-I P~ = - -  p dp. 
P+ P+ 

Hence, with allowance for (1.8) we have 

( kopo (~l ko) p+p-~l[2((~l 0 ko )( p+ Zz__(~w)))-l/2 m = P+ - P- _-76"- _--6- In _-6- In - -  + . (3.5) 
Pg0 Pg0 P- P+ / Pg0 P- 
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For the perfect system, we have 

m =  

For discharge from a large tank, we can assume that the pressure and velocity at the inlet of the tubular 
nozzle are related by the Bernoulli integral: 

7dp m2 P+ 
w~. + = O, rn 2 3 -  = p+,,,+ or + [ = O. 

po ~o p 
Then, using the equations of state (1.8), we obtain 

m 2 ( ~  k o )  kopo p+ 
2p2 + p0 ~ (P+ - P- )  + p0--'-~" In --p0 = 0. (3.6) 

Here P0 is the pressure in the volume far from the outlet cross section of the tank. Thus, to determine the 
rate of flow of the gas-saturated liquid through the tube, it is necessary to consider Eqs. (3.6) and (3.4) [or 
(3.5)] simultaneously. For a slight pressure jump (p0 - p+ << p0), instead of (3.6) we can write 

+ p+ -  /2(po p+lp . 2 p0 = 0  or m =  - 

Relations (3.4) [or (3.5)] together with (3.6) define the rate of flow of the gas-saturated liquid from a 
large tank provided that the pressure at the channel outlet p_ is higher than the pressure pc at which flow 
choking occurs [w_ = C(pc)]. If the pressure outside the channel is lower than Pc, we obtain the critical flow 
rate, defined by 

rn = p(pc)C(pc)  = m r .  (3.7) 

Thus, depending on the gas-saturation conditions in the tank, the conditions outside the tank 
determined by the pressure, and the geometrical and hydraulic characteristics of the channel, there are two 
discharge regimes: critical and subcritical. In the case of subcritical flow (p_ > pc and m < m r ) ,  using the 
known parameters of the liquid in the tank (for example, the temperature To) and the pressure p_ outside 
the tank, it is necessary to simultaneously solve Eqs. (3.5) and (3.6), which form a system of transcendental 
equations for the two unknown parameters m and p+. For the critical effiux (p_ < Pc), the system of three 
equations (3.5), (3.6), and (3.7) for the three unknown parameters mr ,  p+, and Pc should be considered. 

4. D i scha rge  of  C h a m p a g n e .  We consider the problem of evacuation through a slot in a tank of 
finite volume. We assume that  the pressure in the main volume at sufficient distance from the slot is uniform 
(the homobaric condition), and the discharge is quasisteady. The equation of conservation of mass for the 
gas-liquid mixture located in volume V is written as 

V dp(i) 
dt = -SP(e)W(e)' (4.1) 

where P(i) is the mean density of the mixture in the tank, P(e) and W(e ) are the density and flow velocity at 
the exit from the slot, and S is the cross-sectional area of the slot. By virtue of the assumptions adopted 
above, the pressure in the volume and at the outlet section and the flow velocity are related by the Bernoulli 
integral 

w~e) P(i) dp 
+ _ [ - y  = 0 .  (4.9_) 

2 

in this case, two discharge regimes are possible. The first is the gas-dynamic choking regime, in which the 
flow velocity w(e ) is equal to the local velocity of sound. In this case, the pressure Pc at the exit from the slot 
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is higher than the external pressure pe and is defined by the equation 

C(pc) = w(pc), (4.3) 

where w(pc)  = w(e) is determined from the Bernoulli integral (4.2). 
Taking into account (1.8), (1.10), and (4.2), from (4.3) we obtain the following transcendental equation 

for determining Pc from the current pressure inside the tank p(i): 
I 

( 1 - 9 ~ , ) P c + 9 ~ , =  2V/~ ,[ (1- f f~ , ) (P( i ) -Pc)+~, In(P( i ) /Pc)]  1/2, P(i)= p(i--!, Pc = p c .  (4.4) 
1~ Po 

If the value of PC is higher than the external pressure P(e), instead of p(~) and w(e ) in Eq. (4.1) it is necessary 
to use the density and velocity obtained from formulas (1.7) and (4.2) for p = Pc. Using (4.1) and taking into 
account (4.4), we obtain the following equation for pressure variation in the tank: 

9~3,/2 ~ = - P c [ ( 1  - :R,)P(i) + :R,] 2 (4.5) 

For the perfect system, relations (4.4) and (4.5) yield dP(i)/dv = - P ( i ) / ~  and Pc  = P(i)/~J ~. 
If the pressure Pc (or Pc) determined from Eq. (4.4) for the initial state [P(i) = p0] is not higher than 

the external pressure pe (Pc <~ pc), then, taking into account (1.8) and (4.2) for P(e) = pe from (4.1), instead 
of Eq. (4.5) we obtain 

~R, dR(i)dr = -V~Pe[(1 - 9~,)P(i ) + 9~,]2[(1 - ~*)(P(i) - P,) + ~* ln(P(i)/P,)]/[(1 - 9~,)Pe + ~,] .  (4.6) 

Hence, for the perfect system, we obtain the equation 

dP(i) = _pe.  ~/-~l " P(i) 

dr V"""  Pc 
Consequently, if the initial pressure is rather high pc  > Pe, the discharge process consists of two stages. 

In the first stage - -  from the beginning of discharge up to the moment when the critical pressure becomes 
equal to the external pressure (Pc = Pe) - -  the process is described by the system of two equations (4.4) and 
(4.5). At the second stage - -  from the moment when Pc = Pe up to the moment when the pressure in the 
tank decreases to the external pressure pe [P(i) = Pe] - -  the process is described by one equation (4.6). 

In the case of a perfect system, the times of the first and second stages of the discharge are given by 

VTP~ dP(i) (4.7) 
r( ' )  = -x /~ ln  (v~P~), r (2)= f 

P~ k/21n ( P(o/ Pe ) " Pc 
If, for the initial state, the condition Pc ~ pe is satisfied, the evacuation process consists of only the 
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second stage. In the case of the perfect system, the time of evacuation is given by 

1 dp(i ) (4.8) 

Pc 

Figure 4 shows curves of the dimensionless pressures inside the tank (solid curves) and at the exit from 
the slot (dashed curves) versus the dimensionless time for p0 = 0.3 MPa. Curves 1-3 are obtained for the 
values ~ .  = 1.7, 1.0, and 0.51, which correspond to the Ostwald coefficients for water with carbon dioxide 
at temperatures T = 273, 288, and 323 K. Analytical formulas (4.7) and (4.8) and the above numerical 
calculations show that  for V = 10 -a m 3, 5' = 10 -4 m 2, and p0 "" 0.2-0.5 MPa, the characteristic time of 
evacuation is one or two seconds. Then, from the estimates at the beginning of the article it follows that for 
the flow solution described, the number of additive species should be much greater than fi ~ 1014 m -3 and 
the radii of gas inclusions and the volumetric gas content lag = (4/3)~raan] near the initial state should satisfy 
the conditions a 2>> 10 -6 m and trg >> 10 -4. 

R E F E R E N C E S  

. 

2. 
3. 

4. 

A. Yu. Namiot, Solubility of Gases in Water [Russian translation], Nedra, Moscow (1981). 
G. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1968). 
A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow 
(1972). 
R. I. Nigmatulin, Dynamics of Multiphase Media, Part 2, Hemisphere Publ., New York (1991). 

62 


